
Linear systems – Final exam – Version B – Solutions

Final exam 2020–2021, Tuesday 15 June 2021, 15:00 – 18:30

Problem 1 (3 + 7 + 4 + 10 + 4 = 28 points)
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Electrical circuits with nonlinear elements are expected to form the building blocks for future
brain-inspired computers. The simplest such circuit, depicted above, can be modelled as

Lİ(t) = −dh

dq

(
q(t)

)
I(t) + Vext(t),

q̇(t) = I(t),

(1)

where I(t) ∈ R is the current through the inductor with inductance L > 0. The nonlinear element
has the internal state variable q(t) ∈ R and is characterized by the smooth function h satisfying

dh

dq
(q) > 0 for all q ∈ R.

Finally, Vext(t) ∈ R is the external voltage applied to the circuit.

(a) The total energy in the circuit is given by the function E(I) = 1
2LI

2. Let Vext(t) = 0 for
all t. Show that the circuit dissipates energy, i.e., the total energy E(I(t)) is not increasing
as a function of time.

Answer. By direct computation,

d
dt

{
E(I(t))

}
= LI(t)İ(t) = −dh

dϕ

(
q(t)

)(
I(t)

)2 ≤ 0, (2)

i.e., the total energy cannot increase.

(b) Show that, for any q̄ ∈ R, (I, q) = (0, q̄) is an equilibrium point for the constant input
Vext(t) = V̄ext with V̄ext = 0. Moreover, linearize the dynamics (1) around the equilibrium
(0, q̄) for V̄ext = 0.

Answer. Subsitution of (I, q) = (0, q̄) in the right-hand sides of (1) gives

−dh

dϕ

(
q̄
)
· 0 = 0, 0 = 0, (3)

such that we have (0, q̄) is indeed an equilibrium for any q̄ ∈ R.

Continuing with linearization, denote

x(t) =

[
I(t)
q(t)

]
, u(t) = Vext(t), x̄ =

[
0
q̄

]
, ū = V̄ext, (4)
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and introduce the perturbations

x̃(t) = x(t)− x̄, ũ(t) = u(t)− ū. (5)

Using the above notation, we write

f(x, u) =

[
−C−1 dh

dq

(
q
)
v + L−1Vext
I

]
(6)

such that the dynamics (1) can be written in the standard state-space form ẋ = f(x, u).
Now, we know that the linearization is obtained as

˙̃x(t) = Ax̃(t) +Bũ(t), (7)

where

A =
∂f

∂x
(x̄, ū), B =

∂f

∂u
(x̄, ū). (8)

To obtain expressions for A and B, note that

∂f

∂x
(x, u) =

[
−L−1 dh

dq

(
q
)
−L−1 d2h

dq2

(
q
)
I

1 0

]
,

∂f

∂u
(x, u) =

[
L−1

0

]
(9)

such that

∂f

∂x
(x̄, ū) =

[
−L−1 dh

dq

(
q̄
)

0

1 0

]
,

∂f

∂u
(x̄, ū) =

[
L−1

0

]
. (10)

(c) Using the linearization in (b), show that the equilibrium (0, q̄) for V̄ext = 0 is not asymptot-
ically stable.

Answer. From the zero column in (10), it is clear that 0 ∈ σ(A). Consequently, σ(A) 6⊂ C−
and the equilibrium is not asymptotically stable.

In the remainder of this problem, we consider the initial value problem (1) with initial conditions

I(0) = I0, q(0) = q0. (11)

and Vext(t) = 0 for all t ≥ 0.

(d) By explicitly solving the first equation in (1), show that the initial value problem (1), (11)
can be written in the simpler form

q̇(t) = I0 −
1

L

(
h(q(t))− h(q0)

)
, q(0) = q0. (12)

In addition, show how I(t) can be obtained from a solution q(t) to (12).

Answer. Note that the first equation in (1), for Vext(t) = 0, can be written as

Lİ(t) = −dh

dq

(
q(t)

)
I(t) = −dh

dq

(
q(t)

)
q̇(t) = − d

dt

{
h(q(t))

}
, (13)

by use of the chain rule and the second equation in (1). Integration of the result over the
interval [0, t] gives ∫ t

0

Lİ(τ) dτ =

∫ t

0

− d
dτ

{
h(q(τ))

}
dτ, (14)
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such that

L
(
I(t)− I(0)

)
= −h(q(t)) + h(q(0)). (15)

Rearranging terms and the use of the initial conditions (11) leads to

I(t) = I0 − L−1
(
h(q(t))− h(q0)

)
, (16)

after which substitution in the second equation in (1) leads to

q̇(t) = I0 − L−1
(
h(q(t))− h(q0)

)
. (17)

This is indeed the desired result. Here, we stress that (17) is still a differential equation and
thus requires the initial condition q(0) = q0.

Finally, note that (16) allows for constructing I(t) from any solution q(t) to (17).

(e) It can easily be shown that the dynamics in (12) has a unique equilibrium point q∗ and that
the solution to the initial value problem (12) satisfies

lim
t→∞

q(t) = q∗.

Why does this not contradict the answer in (c)?

Answer. The dynamics (12) holds only for the initial condition (11) and the equilibrium
point in (12) is dependent on this initial condition. For clarity, denote this as q∗(I0, q0). We
thus have

lim
t→∞

q(t) = q∗(I0, q0). (18)

The above gives the more useful interpretation of q∗ as the limit value of q(t) for given initial
conditions. As this limit value is generally dependent on the initial conditions, the result is
not in disagreement with (c).
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Problem 2 (15 points)

Consider the linear system given by the transfer function

T (s) =
s+ 2

s4 + as3 + 4as2 + 2as+ 3a

with a ∈ R. Give the values of a for which the system is externally stable.

Answer. Denote

q(s) = s4 + as3 + 4as2 + 2as+ 3a. (19)

First, note that external stability is determined by the roots of the denominator polynomial
q after cancelling factors common with the numerator. However, as −2 is the only root of the
numerator polynomial, it can at most cancel a stable root of q. As such, the system given by the
transfer function T is stable if and only if q is a stable polynomial.

We proceed by forming the following Routh-Hurwitz table:

s4 s3 s2 s1 s0

a× q 1 a 4a 2a 3a (Step 0)
1× a 2a

r a2 4a2 − 2a 2a2 3a2 (Step 1)
(4a− 2)× r′ a 4a− 2 2a 3a (Step 1’)

a× 4a− 2 3a
t (4a− 2)2 b 3a(4a− 2) (Step 2)

From the table, we can draw the following conclusions.

Step 0. Recall that a necessary condition for stability of a polynomial is that all its coefficients
have the same sign. Hence, already from q we can conclude that

a > 0 (20)

is a necessary condition. We assume this from now on. Note that this also allows for application
of the first step in the recursive procedure.

Step 1. The polynomial r is the result after applying the first step. To simplify this, note that
a > 0 by assumption, allowing division by a.

Step 1’. Using a similar reasoning as in Step 0, we see that a necessary condition for stability of
r′ is that

4a− 2 > 0 ⇔ a > 1
2 (21)

We proceed with one more step, as is allowed as the two leading coefficients have the same sign.

Step 2. The result of step 2 is the polynomial t, where

b = 2a(4a− 2)− 3a2 = 5a2 − 4a = a(5a− 4). (22)

We know that a second-order polynomial (as t is) is stable if and only if all coefficients have the
same sign. As we had already assumed (21), this is the case if and only if a > 4

5 as follows
from (22).

Combining the above, we have that a > 4
5 is necessary and sufficient for t to be stable. Through

the Routh-Hurwitz procedure, this implies stability of r and q. Hence, q is stable if and only if

a > 4
5 . (23)

By the reasoning on top of this page, this is also necessary and sufficient for external stability
of T .
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Problem 3 (4 + 10 + 8 = 22 points)

Consider the linear system

ẋ(t) = Ax(t) +Bu(t).

with state x(t) ∈ R2, input u(t) ∈ R, and matrices

A =

[ 3
2 −

3
2

3
2

1
2

]
, B =

[
1
−1

]
.

(a) Verify that the system is controllable.

Answer. A direct computation shows that[
B AB

]
=

[
1 3
−1 1

]
(24)

such that

rank
[
B AB

]
= rank

[
1 3
−1 1

]
= 2 = n, (25)

i.e., the system is controllable.

(b) Find a nonsingular matrix T and real numbers α1, α2 such that

TAT−1 =

[
0 1
α1 α2

]
, TB =

[
0
1

]
.

Hint. It is sufficient to give T−1.

Answer. We first compute the characteristic polynomial of A as

∆A(s) = det(sI −A) =

∣∣∣∣s− 3
2

3
2

− 3
2 s− 1

2

∣∣∣∣
= (s− 3

2 )(s− 1
2 ) +

9

4

= s2 − 2s+ 3
4 + 9

4

= s2 − 2s+ 3 (26)

This polynomial can be written in standard form as

∆A(s) = s2 + a1s+ a0 (27)

with a1 = −2 and a0 = 3.

Now, consider the vectors

q2 = B =

[
1
−1

]
, q1 = AB + a1B =

[
3
1

]
+ (−2)

[
1
−1

]
=

[
1
3

]
, (28)

leading to the matrix T characterized through its inverse as

T−1 =
[
q1 q2

]
=

[
1 1
3 −1

]
. (29)

By construction, this choice of matrix leads to TAT−1 and TB of the form (26), with

α1 = −a0 = −3, α2 = −a1 = 2. (30)

As can be verified by direct computation. For reference, T is given as

T = 1
4

[
1 1
3 −1

]
. (31)
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(c) Use the matrix T from (b) to design a state feedback controller u(t) = Fx(t) such that the
closed-loop system matrix A+BF has eigenvalues −1 and −2.

Answer. Note that

∆A+BF (s) = ∆T (A+BF )T−1(s), (32)

which allows controller design in the “transformed coordinates”. Furthermore, denote

FT−1 =
[
f0 f1

]
(33)

such that

T (A+BF )T−1 = TAT−1 + TBF−1

=

[
0 1
−a0 −a1

]
+

[
0
1

] [
f0 f1

]
=

[
0 1

f0 − a0 f1 − a1

]
. (34)

As the above matrix is in so-called companion form, it is immediate that

∆T (A+BF )T−1(s) = s2 + (a1 − f1)s+ (a0 − f0). (35)

Recall that we would like the closed-loop system matrix A+BF to have eigenvalues at −1
and −2. To enforce this, define the desired polynomial p such that it has its roots at those
locations. Specifically,

p(s) = (s+ 1)(s+ 2) = s2 + 3s+ 2. (36)

Comparing this with (35) leads to

a1 − f1 = 3
a0 − f0 = 2

⇔ f1 = a1 − 3 = −2− 3 = −5
f0 = a0 − 2 = 3− 2 = 1

(37)

such that

FT−1 =
[
f0 f1

]
=
[
1 −5

]
. (38)

By solving this linear equation for F (e.g., by post-muliplying by T ), we obtain

F =
[
− 7

2
3
2

]
. (39)
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Problem 4 (5 + 5 = 10 points)

Consider the linear system

ẋ(t) =

−1 0 0
1 0 1
−4 2 1

x(t), y(t) =
[
3 −2 1

]
x(t).

(a) Show that the system is not observable and give a basis for the unobservable subspace.

Answer. Compute  C
CA
CA2

 =

 3 −2 1
−9 2 −1
15 −2 1

 . (40)

As the third column is clearly linearly dependent from the second column, it is clear that
this matrix does not have full column rank. As such, it is not observable.

Recall that the unobservable subspace N is given as

N = ker

 3 −2 1
−9 2 −1
15 −2 1

 , (41)

for which is a basis is easily obtained as

N = span


0

1
2

 . (42)

(b) Is the system detectable?

Answer. As a first step in determining detectability, we need to compute the eigenvalues
of A. Due to the lower block triangular structure, we have

σ(A) = σ
([
−1
])
∪ σ

([
0 1
2 1

])
= {−1} ∪ σ

([
0 1
2 1

])
. (43)

To compute the spectrum of the 2× 2 matrix above, consider its characteristic polynomial∣∣∣∣ s −1
−2 s− 1

∣∣∣∣ = s(s− 1)− 2 = s2 − s− 2 = (s− 2)(s+ 1). (44)

As a result, we have

σ

([
0 1
2 1

])
= {−1, 2}, (45)

such that

σ(A) = {−1, 2} (46)

where −1 has multiplicity two. It is clear that λ = 2 is the only eigenvalue for which
Re(λ) > 0. Following the Hautus test for detectability, compute

[
A− λI
C

]
=


−3 0 0
1 −2 1
−4 2 −1
3 −2 1

 (47)
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from which it can be concluded that

rank

[
A− λI
C

]
= rank


−3 0 0
1 −2 1
−4 2 −1
3 −2 1

 = 2 < 3 = n, (48)

such that the system is not detectable.
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Problem 5 (15 points)

Consider the linear system

ẋ(t) = Ax(t), y(t) = Cx(t) (49)

with x(t) ∈ Rn and y(t) ∈ Rp. The linear system is called output stable if

lim
t→∞

CeAtx0 = 0 for all x0 ∈ Rn.

Show that the following two statements are equivalent:

1. (49) is output stable;

2. every eigenvalue λ of A satisfying Re(λ) ≥ 0 is not (A,C)-observable.

Hint. You may use the following fact: for an eigenvector v corresponding to an eigenvalue λ of A,
we have that eAtv = veλt.

Answer. We start with the proof of 1. ⇒ 2.. To prove 2., let λ be an eigenvalue of A satisfying
Re(λ) ≥ 0 and let v be an associated eigenvalue, i.e., Av = λv Choosing x0 and using the hint, we
get from output stability (in 1.) that

0 = lim
t→∞

CeAtv = lim
t→∞

Cveλt. (50)

However, as Re(λ) ≥ 0, this implies Cv = 0. Collecting what we have, we can write[
A− λI
C

]
v = 0, (51)

which implies

rank

[
A− λI
C

]
< n (52)

as v 6= 0 by definition of an eigenvalue. Hence, λ is not (A,C)-observable.

The implication 2.⇒ 1. is not true. A counterexample is

A =

[
1 0
0 1

]
, C =

[
1 0
]
. (53)

The only eigenvalue λ = 1 is not (A,C)-observable, but the corresponding system is not output
stable.

(10 points free)
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